	is malpractice
pages.	vill be treated
maining dank	2. Any revealing of identification, appeal to evaluator and /or equations written eg. 42+8 = 50, will be treated as malpra
ines on the re	tions written e _l
diagonal cross	or and for equa
ipuisoriiy draw	peal to evaluat
r answers, com	entification, ap
pmpleting you	revealing of id-
\$ 	2. Au

Sixth Semester B.E. Degree Examination, Dec.2013/Jan.2014 Antennas and Propagation

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part 2. Draw diagrams wherever necessary.

PART - A

- What is directivity? Obtain the value of beam area in terms of radiation intensity. (05 Marks) 1
 - What is effective length for an antenna? Obtain the value in the case of $\lambda/2$ dipole. (06 Marks)
 - Calculate the exact directivity for the following sources having following power patterns:
 - $U = U_m \cdot \sin^2 \theta \cdot \sin^3 \phi$.
 - $U = U_m \cdot \sin\theta \cdot \sin^3\phi$.
 - $U = U_m \cdot \sin^2 \theta \cdot \sin^3 \phi$.

U has value only for $0 \le \theta \le \pi$ and $0 \le \phi \le \pi$ and is zero else where.

(09 Marks)

- State and explain power theorems in terms of power density and radiation intensity. 2
 - (05 Marks)
 - Explain the different radiation patterns for an antenna.

(07 Marks)

(06 Marks)

- Derive the expression for the field intensity in the case of 'n' number of isotropic sources (08 Marks) with uniform spacing.
- Obtain the electric field intensity in the case of a thin linear antenna. (10 Marks) 3
 - (06 Marks) Calculate the value of radiation resistance in the case of a short dipole. b.
 - Obtain the value of directivity when two isotropic sources oppositely exited. (04 Marks)
- Explain with next-diagrams different types of slot antenna and its working concept. (08 Marks)
 - Obtain the value of impedance of slot antenna in terms of its complimentary dipole antenna (06 Marks) impedance Q_d. (06 Marks)
 - Explain Babinet's principle with illustrations.

PART - B

Explain various types of horn antennas with neat diagrams. 5

(08 Marks) Explain the working of a log-periodic antenna with a neat diagram.

- Determine the cut-off frequencies and band pass of a log-periodic dipole array with a design factor of 0.7. Ten dipoles are used in the structure, the smallest having a dimension equal to $\frac{l_1}{2} = 0.3 \, \text{mtrs}$.
- (07 Marks) Explain a yagi-uda antenna structure with a neat diagram.
 - Explain lens antenna and find the radius of curvature (R) in the case of a convex lens. (07 Marks)
 - A paraboloid reflector of 1.8mtr diameter is used at 6 GHz. Calculate beam width between the nulls and gain in dB. Area factor for dish is 0.65. (06 Marks)

- a. Derive an expression for field intensity in the case of a space wave propagation. (10 Marks) b. Explain duct propagation. (05 Marks)
- c. A transmitter radiates 100 watts of power at a frequency of 50MHz in space wave propagation. The transmitting antenna has a gain of 5 and a height of 50mtrs. The receiving antenna height is 2mtrs. It is estimated that a field strength of 100µV/meter is required to give satisfactory signals in the receiving antennas assuming flat earth.

 8 a Explain the mechanism of ionospheric wave propagation. Also derive an expression for the refractive index of ionosphere.

 (10 Marks)

 Control of the terms:

 (05 Marks)

- Calculation Deregion. electrons/m³. c. Calculate the value of frequency at which the electromagnetic wave should be propagated in the D-region. It is given that refractive index $\mu = 0.5$ and electron density N = 10^{12} (05 Marks)

confidence

ران مرین